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Abstract In this paper, we use the local maximum likelihood (LML) method
proposed by Kumbhakar et al. (J Econom, 2007) to estimate stochastic cost
frontier models for a sample of 3,691 U.S. commercial banks. This method
relaxes several deficiencies in the econometric estimation of frontier functions.
In particular, we relax the assumption that all banks share the same produc-
tion technology and provide bank-specific measures of returns to scale and cost
inefficiency. The LML method is applied to estimate the cost frontiers in which
a truncated normal distribution is used to model technical inefficiency. This
formulation allows the cost frontier, inefficiency effects and heteroskedasticity
in both noise and inefficiency components to be quite flexible.

Keywords Data envelopment analysis · Cost efficiency · Local maximum
likelihood estimation · U.S. commercial bank
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1 Introduction

Since the publication of the seminal papers by Aigner et al. (1977) and Meeusen
and van den Broeck (1977), econometric estimation of stochastic frontier (SF)
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models became a standard practice in efficiency measurement studies. Although
SF models can be estimated either by sampling theory or Bayesian techniques,
efficiency measurement in these models rely on the choice of functional forms,
distributional assumptions, fixity of parameters of the underlying production
technology, etc. Some of these assumptions are strong in the sense that empiri-
cal results are often sensitive to these assumptions. In a recent survey Yatchew
(1998) argues that economic theory rarely, if ever, specifies precise functional
forms for production or cost functions. Consequently, its implications are not,
strictly speaking, testable when arbitrary parametric functional forms are speci-
fied. To the extent that the production or cost functions are misspecified, it is pos-
sible that a true model can be rejected, and estimates of efficiency will be biased.
Thus, care must be taken in specifying functional forms in empirical research.

An alternative to the SF approach is the deterministic nonparametric
approach, viz., the data envelopment analysis (DEA) popularized by Charnes
et al. (1978). While the SF models assume specific parametric functional forms
for the production or cost frontiers, and use distributional assumptions on the
noise and inefficiency components, the DEA models do not make such assump-
tions. This is clearly an advantage of DEA over SF approach. However, DEA
cannot separate ‘inefficiency‘ from ‘noise’. Since the statistical theory is well
developed for SF models, one can make statistical inferences about parameters
and functions of interest, based on estimated parameters and data, including
inefficiency. However, this is not the case in DEA models (although some pro-
gress has been made in terms of bootstrapping (see, for example, Simar and
Wilson 2000). Thus, applied researchers are unable to make statements regard-
ing the statistical properties of the estimated functions such as input elasticities,
scale economies, efficiency, etc., using the DEA.

Park et al. (1998) have considered semi-parametric efficient estimation of SF
panel models under alternative assumptions on the joint distribution of random
firm effects and the regressors. This approach is certainly useful, provided there
is no uncertainty about linearity of the model. More recently, Cazals et al.
(2002) have proposed a nonparametric estimator based on the free disposable
hull (FDH) concept. This estimator is more robust relative to the DEA but it
doesn’t envelope all the data. This is, essentially, a stochastic DEA estimator
for which the authors provide an asymptotic theory.

Our purpose in this paper is not to improve on estimating techniques for
linear stochastic frontier models as in Park et al. (1998) but to propose efficient
estimating techniques for semiparametric stochastic frontier models. More spe-
cifically we use the local maximum likelihood (LML) method, which is a semi-
parametric technique in the sense that it makes the parameters of a given
parametric model dependent on the covariates via a process of localization.
For example, if β is a nonparametric function β(xi), the familiar linear model
yi = x′

iβ + ui becomes a semiparametric model. This approach has been intro-
duced in stochastic frontiers by Kumbhakar et al. (2007), henceforth KPST,
the focus of which was to prove asymptotic properties of LML estimator. Here
our interest is mostly in the application of their model with two modest exten-
sions. First, we examine both Cobb–Douglas and translog functional forms as
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anchoring models for the semiparametric SF function. Second, we use the
truncated normal distribution instead of the half-normal distribution to model
the inefficiency component. The advantages of the LML approach are as fol-
lows. First, we avoid assuming a global parametric functional form (that holds
for all observations) for the cost frontier. Although the anchoring function is
linear it is not globally linear because the parameters of the linear function are
made observation-specific through localization. Thus, this approach will hope-
fully avoid parameter inconsistency problem associated with misspecification
in functional form. Second, by allowing the location parameter of the trun-
cated normal distribution for the one-sided error to be an arbitrary function
of relative prices and outputs we allow for inefficiency effects, which consider-
ably generalizes the model of Kumbhakar et al. (1991) (henceforth KGM) and
Battese and Coelli (1995). Third, by allowing the scale parameters of both error
terms to be arbitrary functions of relative prices and outputs we allow for heter-
oskedasticity of quite general form in both inefficiency and noise components.
We view these generalizations quite important in drawing robust conclusions
about cost efficiency as well as other measures like returns to scale, elasticities,
etc., in any empirical application.

The remainder of the paper is organized as follows. Local estimation and
its application in SF models are reviewed in Sect. 2. Some computational and
practical issues are discussed in Sect. 3. In Sect. 4 we apply the LML technique
to estimate cost frontiers using a sample of U.S. commercial banks. The paper
concludes with a summary of the main findings in Sect. 5.

2 Local estimation in stochastic frontier models

KPST introduced the notion of local likelihood estimation for the SF model
and derived the asymptotic properties of the estimators. To describe the model
very briefly, suppose we have a parametric model that specifies the density of
an observed dependent variable yi (i = 1, . . . , n) conditional on a vector of
observable covariates xi ∈ X ⊆ Rk, a vector of unknown parameters θ ∈ � ⊆
Rm, and let the probability density function of yi given xi be l(yi; xi, θ). The
parametric ML estimator is then given by

θ̃ = arg max
θ∈�

:
n∑

i=1

ln l(yi; xi, θ)

The LML estimation technique is a way to allow for nonparametric effects
within the parametric model (Tibshirani 1984). A natural way to convert the
parametric model to a nonparametric one is to make the parameter θ function
of the covariates xi. Within LML this is accomplished as follows. For an arbitrary
x ∈ X, the LML estimator solves the problem

θ̃ (x) = arg max
θ∈�

:
n∑

i=1

ln l(yi; xi, θ)KH(xi − x)
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where KH is a kernel function that depends on a matrix bandwidth H. The idea
is to choose an anchoring parametric model and maximize a weighted log-likeli-
hood function that places more weight to observations near x rather than weight
each observation equally, as the parametric ML estimator would do. By solving
the LML problem for each point x ∈ X, we can construct the function θ̃ (x)
that is an estimator for θ(x). This is a general way of converting the parametric
model to a nonparametric approximation to the unknown model.1 To proceed
further, suppose we have the following stochastic frontier cost model

yi = x′
iβ + vi + ui; vi ∼ i.i.d. (0, σ 2), ui ∼ i.i.d. (µ,ω2), ui ≥ 0

for i = 1, . . . , n,β ∈ Rk

where y is log cost and xi is a vector of input prices and outputs (in logs);2 vi
and ui are the noise and inefficiency components, respectively. Furthermore, vi
and ui are assumed to be mutually independent as well as independent of xi.
The main shortcoming of this model, part from being linear in xi and making
distributional assumptions on the noise term (v) and inefficiency term (u), is
that the parameter vector β that describes the underlying production technol-
ogy is constant. That is, neither β nor µ and ω depend on xi. Although µ and
ω are often made functions of covariates (thereby adding some flexibility into
the model), specific parametric functions are to be used to estimate the model
using the standard ML procedure. However, the β coefficients are assumed to
be either constant (for all observations) or random (with a constant mean and
constant variance). Given that estimated efficiency depends to a great extent
on the chosen functional form, it is desirable to use a model that is flexible and
robust.

To make the frontier model more flexible, we adopt the following strategy.
Consider the usual parametric ML estimator for the normal (v) and truncated
normal (u) stochastic cost frontier model that solves the following problem
(Stevenson 1980):

θ̃ = arg max
θ∈�

:
n∑

i=1

ln l(yi; xi, θ)

where

l(yi; xi, θ) = [�(ψ)]−1�

[
σ 2ψ + ω(yi − x′

iβ)

σ(ω2 + σ 2)1/2

] [
2π(ω2 + σ 2)

]−1/2

× exp

[
− (yi − x′

iβ − µ)2

2
(
ω2 + σ 2

)
]

,

1 Another way to deal with heterogeneity in frontier models is the random coefficient approach
(Tsionas 2002) which is, however, heavily parametric.
2 The cost function specification is discussed in details in Sect. 5.2.
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ψ = µ/ω, and� denotes the standard normal cumulative distribution function.
The parameter vector is θ = [β, σ ,ω,ψ] and the parameter space is � = Rk ×
R+ × R+ × R. Local ML estimation of the corresponding above model involves
the following steps. First, we choose a kernel function. A reasonable choice is

KH(d) = (2π)−m/2|H|−1/2 exp

(
−1

2
d′H−1d

)
, d ∈ Rm,

where m is the dimensionality of θ , H = h · S, h > 0 is a scalar bandwidth, and
S is the sample covariance matrix of xi. Second, for a particular point x ∈ X, we
solve the following problem:

θ̃ (x) = arg max
θ∈�

:
n∑

i=1

{
− ln�(ψ)+ ln�

[
σ 2ψ + ω(yi − x′

iβ)

σ(ω2 + σ 2)1/2

]

−1
2

ln
(
ω2 + σ 2

)
− 1

2
(yi − x′

iβ − µ)2(
ω2 + σ 2

)
}

KH(xi − x)

A solution to this problem provides the LML parameter estimates of β̃(x), σ̃ (x),
ω̃(x) and ψ̃(x). It allows for nonparametric heteroskedasticity in both error
components unlike Caudill et al. (1995), Hadri (1999) and Wang (2002). It is
well known that inefficiency effects and heteroskedasticity in the one-sided
error component, if ignored, yield inconsistent parameter estimates. In these
situations, the LML technique provides a better way to obtain heteroskedas-
ticity-corrected parameter estimates (from the point of view of large sample
theory) without making any functional form assumptions on the form of heter-
oskedasticity.

Finally, it should be noticed that the kernel weights KH(xi −x) do not involve
unknown parameters (if h is known) so they can be computed in advance and,
therefore, the estimator can be programmed in any standard econometric soft-
ware. However, one downside of this approach has to chose a kernel function
and bandwidth parameter, h. Optimal bandwidth choice through cross-valida-
tion technique removes arbitrariness on the choice of h.

3 Computational/practical issues

An important practical issue in estimation is the choice of the bandwidth param-
eter h. This parameter can be chosen by cross-validation. To do this, first we
solve the LML problem at all data points except for observation j, and define
for some x̄ ∈ X,

θ̃ (j)(x, h) = arg max
θ∈�

:
∑

i �=j

ln l(yi; xi, θ)KH(xi − x̄)

for all j = 1, . . . , n. The point x̄ can be the overall median of the data. Then we
choose h to minimize
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n∑

j=1

(
yj − ỹj(h)

)2

where ỹj(h) denotes the fitted value of yj based on h.
Other practical issues are related to the specification of an anchoring model

for the regression part as well as anchoring models for the one-sided error term.
One can either fit either Cobb–Douglas or translog models depending on size
of the data and goodness of fit desired. The choice will also influence com-
putational burden since translog models usually gives a better fit but involve
many parameters to estimate. Another consideration is that anchoring functions
should satisfy curvature and monotonicity restrictions. This is straightforward
for the Cobb–Douglas functions but more complicated for the translog func-
tions, where such restrictions have to be imposed at each observed data point.

4 An application to U.S. commercial banks

We use the above technique to examine cost efficiency of the U.S. commer-
cial banks. The commercial banking industry is one of the largest and most
important sectors of the U.S. economy. The structure of the banking industry
has undergone rapid changes in the last two decades, mostly due to exten-
sive consolidation. The number of commercial banks has declined over time
and concentration at the national level has increased. The number and size of
large banks has also increased through acquisitions and mergers. Justification
of mergers and acquisitions is often provided in terms of economies of scale
and efficiency. Thus, it is important to ask: (i) Are large banks necessarily more
efficient? (ii) Do large banks operate beyond their efficient scale? Answers to
these questions depend on the estimation technique (parametric vs. nonpara-
metric) used, functional form chosen, etc.3 Since the banking industry consists
of a large number of small banks and assets are highly concentrated in a few
very large banks, heteroskedasticity is likely to be present in both the noise and
inefficiency components.4 Moreover, the production technology among banks
is likely to differ.5 These problems can be avoided using the LML approach
that makes parameters bank-specific without using any ad hoc specification.

3 There are numerous studies that address scale economies and efficiency. See, e.g., McAllister
and McManus (1993), Berger and Mester (1997), Berger and Humphrey (1991), Boyd and Graham
(1991), Mukherjee et al. (2001), Wheelock and Wilson (2001), among others.
4 It is well known that if the inefficiency component is heteroscedastic and one ignores it, both
parameter estimates and estimated inefficiencies will be inconsistent (see Kumbhakar and Lovell
2000, Chap. 3.4). Consequently, estimates of economies of scale are likely to be wrong.
5 Although, in a parametric setting one can test this using the Chow test for structural change
(parameter stability) in which banks are grouped under small, medium, large, etc., there is no
universally accepted criterion for grouping banks and deciding how many groups are to be chosen.
McAllister and McManus (1993) argued that returns to scale estimates are biased when one fits a
single cost function for all the banks.
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Fig. 1 Distribution of assets

4.1 Data

The data for this study is taken from the commercial bank and bank holding
company database managed by the Federal Reserve Bank of Chicago. It is based
on the Report of Condition and Income (Call Report) for all U.S. commercial
banks that report to the Federal Reserve banks and the FDIC. In this paper
we used the data for the year 20006 and selected a sample of 3,691 commercial
banks. Median value of assets of these banks is 76 million dollars. The distri-
butions of bank assets and banks are shown in Fig. 1. The top 7% of the banks
control more than 60% of the total assets while the bottom 10% of the banks
control about 1% of total bank assets. About 20% of the top banks control
more than 85% of the assets. Thus, the distribution of assets across banks is
highly skewed. As a result of this, it is very likely that the parameters of the
underlying technology (cost function in our case) will differ among banks.

In the banking literature there is a controversy regarding the choice of
inputs and outputs. Here we follow the intermediation approach [Kaparakis
et al. (1994) in which banks are viewed as financial firms transforming various
financial and physical resources into loans and investments. The output vari-
ables are: installment loans (to individuals for personal/household expenses)
(y1), real estate loans (y2), business loans (y3), federal funds sold and securi-
ties purchased under agreements to resell (y4), other assets (assets that can-
not be properly included in any other asset items in the balance sheet) (y5).
The input variables are: labor (x1), capital (x2), purchased funds (x3), interest-

6 It is possible to extend the data beyond 2000. However, the panel extension of the KPST (2007)
model is not trivial. One obvious complication in a panel set-up is to model the temporal behavior of
inefficiency. This will affect consistency and asymptotic normality of the LML parameter estimates.
Because of this, we decided to stick to the cross-sectional data. However, instead of using the 2000
data, we could have used the 2005 data. Preliminary investigation of the 2005 data showed that the
results are qualitatively similar to those from the 2000 data.
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bearing deposits in total transaction accounts (x4) and interest-bearing deposits
in total nontransaction accounts (x5). The input prices are calculated in the
usual way. The price of labor (w1) is the average wage/salary per employee and
is obtained from expenses on salaries and benefits divided by the total number
of full time equivalent employees. Similarly, the price of physical capital, w2 =
(expenses on premises and fixed assets)/the dollar value of premises and fixed
assets; the price of purchased funds, w3 = (interest expense on money market
deposit accounts + expense of federal funds purchased and securities sold under
agreements to repurchase + interest expense on demand notes issued to U.S.
Treasury and other borrowed money)/dollar value of purchased funds], price of
interest-bearing deposits, w4 = (interest expense on interest-bearing categories
of total transaction accounts/dollar value of interest-bearing categories in total
transaction accounts, the price of interest-bearing deposits in total nontrans-
action accounts, w5 = (interest expense on total deposits − interest expense
on interest-bearing categories in total transaction accounts − interest expense
on money market deposit accounts)/dollar value of interest-bearing deposits in
total nontransaction account. Total cost is then defined as the sum of cost of
these five inputs.

4.2 Results from the localized Cobb–Douglas model

Here we present results from the Cobb–Douglas (CD) functional form because
the coefficients of the CD function are easy to interpret. Furthermore, the use of
the CD function avoids the muticollinearity problem that arises with a flexible
functional form such as the translog and the Fourier functional forms.7 Since
we localize the parameters at each point, flexibility is not an issue. In other
words, the use of the CD function gives a clear economic meaning to each and
every coefficient that is made bank-specific through localization. We choose the
h parameter by using cross-validation method.

We experimented with both half-normal and truncated normal distributions
on the one-sided inefficiency term. Results from the truncated normal speci-
fication are found to be better than those from the half-normal specification.
Because of this result we report results based on the truncated normal distribu-
tion on the inefficiency component. The results are based on a CD anchoring
function, i.e., the cost function is specified as

yi = x′
iβ + vi + ui

where as before vi ∼ i.i.d. (0, σ 2) and ui ∼ i.i.d. (µ,ω2), ui ≥ 0i = 1, . . . , n,
β ∈ Rk+m. Here y is total cost (in natural log) and the x variables contain m (5)
outputs and k (5) input prices (all in natural log). Furthermore, to impose linear
homogeneity (in input prices) restrictions on the cost function, we normalize

7 For example, Wheelock and Wilson (2001) found that a global translog cost function violates
regularity conditions for most of the banks. This might be the result of either a wrong functional
form or fitting a parametric function globally.
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Fig. 2 Histogram of parameter estimates

total cost and the input prices by one input price (w3) before taking logs. Thus,
the estimated cost function is

ln C = β0 +
∑

i

βyi ln yi +
∑

j �=3

βwj ln(wj/w3)+ vi + ui

when C = (total cost/w3). Total number of parameters in β (i.e., k + m) is 10.
We report the frequency distribution of estimated parameters in Fig. 2. The

histograms for the parameters show different patterns (some are unimodal
while others are bimodal but none are symmetric). For example, the cost elas-
ticities with respect to outputs (βyi, i = 1, . . . , 5) are skewed to the right for
y1, y3, y4 and y5. The distribution is bimodal for y2, y3 and y5. The estimated
elasticities vary substantially among banks, sometimes as much as 100% from
the smallest to the highest. A similar picture comes out of the cost elasticities
with respect to input prices (with the exception of w5 that shows minimum
variation among banks). Two of the three parameters associated with the distri-
butions of the noise and inefficiency components show large variations among
banks. The estimates of σv and ψ show large variations while the opposite is
true for σu. These large variations in estimated coefficients show why estimating
a single set of parameters for all banks might not be a good idea.

We compute scale economies (SCE) as SCE = ∑5
i=1 ∂ ln C/∂ ln yi =∑5

i=1 βyi(y, x). Since all the parameters are observation-specific, the SCE mea-
sure is bank-specific as well. Thus, although we start from a CD cost function,
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Fig. 3 Histogram of SCE (local ML)

Fig. 4 Plot of SCE against log(asset) (local ML)

the SCE measure is quite flexible. The SCE measures are reported in Fig. 3 in a
histogram. It can be easily seen from the histogram that economies of scale are
not exhausted (SCE being less than unity thereby meaning that returns to scale
are greater than unity) for most of the banks. Returns to scale (RTS = 1/SCE)
is less than unity for less than 5% of the banks. This result contradicts some
earlier studies that show little or no scale economies left for medium and larger
banks. From Fig. 4 that plots SCE against assets (in logarithm) we find that the
benefits of scale economies tend to be lower (in general) for large banks. This
can be seen from the scatter plot that shows a positive relationship between
SCE and log assets. However, we find that RTS is above unity (SCE < 1) for
most of the banks. Examining the scatter plot above the line with SCE = 1 (not
drawn) (i.e., banks for which RTS < 1), we find no clear pattern between SCE
and log assets. That means no strong evidence is found to support the finding
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(mostly from parametric studies that use a single cost function for all banks)
that large/very large banks are operating beyond their optimum size. In other
words, our results support the conventional wisdom that justifies bank mergers
to exploit benefits of scale economies. Using a global translog cost system Wang
and Kumbhakar (2006) found that most of the banks have exhausted their scale
economies. They also found that when banks are clustered in terms of their busi-
ness strategies, scale economoies are found for banks in different groups. While
the LML approach goes much beyond grouping banks (since the coefficients
are bank-specific), their results confirm that counter-intuitive results might be
obtained if wrong functional form (one technology for all the banks) is used.

Now we consider measurement of inefficiency. Suppose we localize with
respect to observation jand denote the resulting LML estimates of the fron-
tier parameter parameters by β(j), σ(j),µ(j),ω(j). Since ui ∼ N(µ,ω2), ui ≥ 0 the
conditional distribution of ui given the data has mean given by

mi,(j) = σ(j)λ(j)

1 + λ2
(j)

[
φ(zi,(j))

�(zi,(j))
− zi,(j)

]
,

where zi,(j) = ei,(j)λ(j)
σ(j)

+ µ(j)
σ(j)λ(j)

, λ(j) = ω(j)/σ(j), ei,(j) = yi − x′
iβ(j), for each i =

1, . . . , n, and φ, � denote the standard normal probability density and distri-
bution functions, respectively. Therefore, mi,(j) is the inefficiency measure8 for
observation i when we localize with respect to observation j. A reasonable
inefficiency measure for observation i is provided by m∗

i = ∑n
j=1 mi,(j)Wj, which

is a weighted average of all mi,(j) based on the LML weights Wj = KH(xj − x).
Naturally, the dominating element in this average is mi,(i), the inefficiency mea-
sure of a particular observation (bank) when we localize with respect to this
observation. Since inefficiency estimate is based on bank-specific parameter
estimates of β, µ, σ and ω our estimate of inefficiency for the particular bank is
quite flexible.9 The firm-specific cost efficiency measures can then be obtained
from exp(−m∗

i ).
We report estimates of cost efficiency in Fig. 5. Modal efficiency is found

to be quite high and about half of the banks are found to be operating at the
efficiency level of 90% or more. To explore this issue further we plot estimates
of cost inefficiency against log assets in Fig. 6. From the scatter plot of banks
we find some (weak) evidence to support the hypothesis that large banks are
more efficient (a weak inverse relationship between inefficiency and log assets
is observed from the scatter plot). Thus, one could argue that the cost advan-
tage from mergers of large banks may not be very high (Berger and Humphrey
1991), especially from an efficiency point of view.

8 This is the well-known Jondrow et al. (1982) estimator.
9 It is not fully nonparametric because of the CD assumption on the anchoring function, distribu-
tional assumptions on efficiency and noise components.
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Fig. 5 Histogram of cost-efficiency (local ML)

Fig. 6 Plot of cost-inefficiency against log(assets) (local ML)

4.3 The Cobb–Dougals LML and the global translog results: a comparison

McAllister and McManus (1993) fitted a parametric translog cost function to the
entire data set for the year 1989 and found that (i) scale economies were absent
for most of the medium and large banks, and (ii) extreme scale economies (dis-
economies) were found for very small (very large) banks. In comparison, their
localized translog model showed much smaller variations in scale economies.
For the sake of comparison, we fit a single translog cost frontier for the entire
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data set in which we assume a truncated normal distribution for the inefficiency
component and a normal distribution for the noise component. Heteroskedas-
ticity is not included in any of the error components.10 We find evidence of scale
economies for majority of banks (see Fig. 8 that shows the histogram of SCE, and
Fig. 9 that graphs scale economies against log assets). Scale diseconomies are
found for the banks with assets more than 1.2 billions of dollars. Thus, the pres-
ence of scale economies for most of the banks is observed when a global translog
cost frontier is fitted to the entire data set. In contrast, the localized CD cost
function results show the presence of scale economies for banks of all sizes.11 We
also estimated the localized translog cost function and obtained similar results.

To compare the estimated efficiencies derived from the LML and global tran-
slog models, first, we compare the frequency distributions (reported in Figs. 5
and 10 as well as Figs. 6 and 11). It can be easily seen that these frequency distri-
butions are quite similar. There are, however, differences in levels and spread.
For example, the mean efficiency is higher in the LML model and the spread
is smaller compared to the global translog model. In the LML model we find
evidence to support that very large banks are as efficient as most of the small
banks (and in general these banks are more efficient than some of the medium
banks.12 Since the LML model is more flexible and it accommodates heteroske-
dasticity associated with both error components, the LML results are robust to
functional form misspecification, heteroskedasticity, etc. These advantages in
turn give more precise results on both scale economies and efficiency compared
to the global translog cost frontier.13

We conclude this section with the following remarks. The global parametric
models used to estimate scale economies and cost efficiency of banks often led
to results that are contrary to conventional wisdom (Wheelock and Wilson 2001;
Wang and Kumbhakar 2006, among others). For example, the common sense
argument used in favor of merger is that large banks take advantage of econ-
omies of scale. On the contrary, empirical findings (based on global parametric
models) show that the large banks have exhausted economies of scale and
they are generally less efficient than their smaller counterparts. Some of these
findings might have resulted from assuming a single parametric cost function
applicable to all the banks (small, medium, large, etc.) in the sample. If the cost
function parameters are either group-specific (Wang and Kumbhakar 2006) or
bank-specific (as in LML) then using a single cost function is likely to introduce

10 Note that we model inefficiency following the stochastic frontier approach whereas McAllister
and McManus (1993) did not, and our LML uses all the observations at every point of evaluation
whereas they did it for only 25% of the observations.
11 There are only a few banks for which we observe diseconomies of scale, and these banks are
from all assets categories. That is, the banks operating beyond their efficient scale show no strong
correlation with assets.
12 The global translog model show large spread in efficiency among the very large and very small
banks.
13 Again the efficiency results based on the translog LML are similar to the Cobb–Douglas LML
results. Since we also find similar result for scale economies, one can perhaps argue that the func-
tional form for the anchoring model is not that important, at least for the present data.
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bias in parameter estimates. These biases are likely to give inaccurate estimates
of scale economies and cost efficiency (McAllister and McManus 1993).

4.4 A comparison between the Cobb–Dougals LML and the DEA results

Instead of using the CD anchoring function one can use other functions that are
more flexible (such as the translog). However, such additional flexibility might
not be necessary because the parameters are observation specific and therefore
the cost function is quite flexible. Use of flexible functional form such as the
translog often violates regularity conditions.14 To check robustness of our CD
LML results we compare them with the DEA efficiency scores. Since DEA is
a nonparametric method of estimating efficiency, it might be argued that the
DEA results should be comparable to results obtained from LML. That is, one
might expect the DEA results closer to the LML results than those obtained
from the global parametric models. Although the DEA is nonparametric it has
two main differences with the LML approach. First, while estimating efficiency
the DEA cannot take noise into account. Thus, for example good luck (neg-
ative noise) will be considered as efficiency in DEA cost efficiency measure.
Consequently, the DEA cost frontier in the cost-output space will be below the
cost frontier estimated using the SF approach and the LML. In other words,
DEA efficiency scores will be lower than those of SFA and LML. Second, the
LML can accommodate heterogeneity in the data by making the variance of
the noise as well as the inefficiency components observation-specific. Ignoring
heteroskedasticity might bias efficiency results even though the model speci-
fication (functional form, for example) is correct. Because of these two major
differences the DEA and LML efficiency scores are likely to differ.

The distributions of efficiency scores (density plots) based on LML, DEA
and the global translog model are reported in Fig. 7. It can be seen that the
LML gives the highest efficiency score followed by the global translog and
DEA. Since some observations (by construction) in DEA are 100% efficient,
the distribution of DEA scores shows a jump towards the end. As expected
the DEA efficiency scores are in most cases lower than those in global translog
and LML (mainly because DEA cannot discriminate noise from inefficiency).
The LML scores are, in general, higher than those from global translog mainly
because of inflexibility of the translog to accommodate heterogeneous technol-
ogy and heteroskedasticity in the noise and inefficiency. The magnitude of the
difference will, however, depend on the data—perhaps directly linked to the
degree of heterogeneity in the production units.

14 In fact, we used translog as the anchoring function and found that results are not much different
from the CD. Because of this we are not reporting results from the translog model. Moreover, the
translog function has much more parameters and often violates regularity conditions on many data
points. This is another reason why a simple functional for such as the translog might be preferred
for most of the applications.
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Fig. 7 Distribution of
efficiency in DEA, LML and
global translog

5 Conclusions

In this paper, we relaxed some rigidities/assumptions associated with estima-
tion of stochastic frontier (SF) models and applied the KPST (2007) local ML
estimator for SF models. We introduce a truncated normal distribution instead
of a half-normal distribution for the one-sided inefficiency component in the
estimation of a stochastic cost frontier using a sample of 3,691 U.S. commercial
banks for the year 2000. This approach allows us to model inefficiency effects
in the spirit of KGM (1991) and Battese and Coelli (1995). These estimates are,
however, more flexible because the underlying model is semiparametric.

Empirically, we find that (i) cost elasticities with respect to outputs and inputs
vary substantially among banks; (ii) scale economies are present for most of the
banks. Furthermore, we don’t find any evidence to support that large banks are
less efficient compared to the small banks. Thus, in general we find evidence
to support conventional wisdom (i.e., large banks are more efficient and can
exploit economies of scale). Although a flexible parametric cost function gener-
ates observation-specific elasticities, scale economies, cost efficiency, etc., these
so called globally flexible functions are found to violate properties of cost func-
tions at many points, and often give unreliable estimates of scale economies.
Results from these models do not always support conventional wisdom believed
by many bankers. The semiparametric cost model and the use of LML makes
the technology quite flexible even with Cobb–Douglas anchoring function.
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Appendix

Appendix Figs. 8, 9, 10, 11.

Fig. 8 Histogram of SCE
(global TL)

Fig. 9 Plot of SCE against
log(assets) (global TL)

Fig. 10 Histogram of
cost-efficiency (global TL)
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Fig. 11 Plot of cost-inefficiency against log(assets) (global TL)
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